Abstract

The Reshui area, located to the northeast of the Qinghai–Tibet Plateau, exhibits complex geological conditions, well-developed structures, and strong hydrothermal activities. The distribution of hot springs within this area is mainly controlled by faults. In this paper, five hot springs from the area were taken as the research object. We comprehensively studied the geochemical characteristics and genetic mechanism of the geothermal water by conducting a field investigation, hydrogeochemistry and environmental isotopic analysis (87Sr/86Sr, δ2H, δ18O, 3H). The surface temperature of the geothermal water ranges from 84 to 91 °C. The geothermal water in the area exhibits a pH value ranging between 8.26 and 8.45, with a total dissolved solids’ (TDS) concentration falling between 2924 and 3140 mg/L, indicating a weakly alkaline saline nature. It falls into the hydrochemical type CI-Na and contains a relatively high content of trace components such as Li, Sr, B, Br, etc., which are of certain developmental value. Ion ratio analysis and strontium isotope characteristics show that the dissolution of evaporite minerals and carbonate minerals serves as a hot spring for the main source of solutes. Hydrogen and oxygen stable isotope characteristics findings indicate that the geothermal water is primarily recharged via atmospheric precipitation. Moreover, the tritium isotopic data suggest that the geothermal water is a mixture of both recent water and ancient water. Moreover, the recharge elevation is estimated to be between 6151 and 6255 m. and the recharge area is located in the Kunlun Mountains around the study area. The mixing ratio of cold water, calculated using the silicon enthalpy equation, is approximately 65% to 70%. Based on the heat storage temperature calculated using the silicon enthalpy equation and the corrected quartz geothermal temperature scale, we infer that the heat storage temperature of geothermal water in the area ranges from 234.4 to 247.8 °C, with a circulation depth between 7385 and 7816 m. The research results are highly valuable in improving the research level concerning the genesis of high-temperature geothermal water in Reshui areas and provide essential theoretical support for the rational development and protection of geothermal resources in the area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call