Abstract

A comprehensive chemostratigraphic study, including evaluation of rare earth elements and trace elements, was conducted to explain the paleoenvironments of the northern margin of the Upper Yangtze Platform. Trace elements, like Ba, U, V, Cu, and Zn, tended to be more abundant in these formations than in the upper continental crust. The authigenic abundances of Al-normalized U and V, as well as the Th/U and V/Sc ratios, were used as indicators of the redox circumstances. In the Nanjiang area, the redox circumstances of the bottom water during the Ordovician-Silurian transition changed from oxic in the Late Katian to slightly anoxic in the Hirnantian and then gradually became anoxic in the Early Rhuddanian. In the Chengkou area, the redox circumstances of the bottom water during the Ordovician-Silurian transition abruptly changed from oxic in the Late Katian to strongly anoxic in the Hirnantian and continued to become more anoxic until the Rhuddanian. The total organic carbon concentrations were well correlated with the redox circumstances of the bottom water. We conclude that the transient hydrothermal activity was not widely distributed during the Late Ordovician-Early Silurian transition, and it might also have been only a local event in the Upper Yangtze Platform. The enrichment in organic matter was mostly sourced from the photic zone and was governed by the redox circumstances of the bottom water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call