Abstract

This paper presents the chemical speciation and retention behavior of chromium (Cr), nickel (Ni), and cadmium (Cd) prior to and after the electrokinetic remediation in glacial till soil. The speciation of the metals was predicted using the chemical speciation program MINEQL(+). The simulations were performed for single-contaminant with only Cr(VI) or Ni, and multi-contaminants consisting of: (1) Cr(VI), Ni, and Cd; (2) Cr(III), Ni and Cd; (3) Cr(VI), Cr(III), Ni and Cd; (4) Cr(VI), Ni, and Cd with reducing agents; and (5) Cr(III), Ni, and Cd with oxidizing agent (Mn). The results showed that the speciation and distribution of cationic metals [Ni, Cd, and Cr(III)] in glacial till soil remain unaffected or slightly affected during electrokinetics. This is attributed to the high pH buffering capacity of the glacial till, leading the metals to precipitate in the soil prior to and after electrokinetics. This study showed that during electrokinetics, Cr(VI) existed as anionic complex and migrated towards the anode and the migration is maximum in case of a single-contaminant system. The study also showed that near the anode in the absence of any reducing and oxidizing agent, Cr(VI) mostly adsorbed, and some of Cr(VI) reduced to Cr(III) and migrated towards the cathode and finally precipitated due to high pH conditions. Ni and Cd remain adsorbed or precipitated due to the high pH conditions throughout the soil. Among the reducing agents, the sulfide had significant effect on the migration of metals compared to ferrous ions. While in the presence of oxidizing agent (Mn), no noticeable Cr(VI) was found in the soil sample indicating the reduction of Cr(VI) to Cr(III) and the predominance of reducing conditions due to the presence of naturally occurring iron in the glacial till soil. Overall, this study provides a reasonable explanation of the speciation and distribution of chromium, nickel and cadmium during the electrokinetic remediation of glacial till soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.