Abstract

The Amo Complex forms one of the prominent ring intrusions in the Jos Plateau and it is lithologically composed of granite porphyry, riebeckite biotite granite, hornblende biotite granite and later intrusives of biotite granite. There are also small intrusions of albite riebeckite granite and albite biotite granite. Major-element compositions of the principal rock units do not show significant differences. Comparison of the variations found in the granites with results of laboratory studies suggest either that water vapor and volatile transfer were important in the local magma series or at least they accompanied other systematic variations. Trace-element associations vary; anomalous enrichments of Rb, Li, F, U, Th, Zr, Nb and HREE occur over mildly peralkaline riebeckite biotite granite, peralkaline albite riebeckite granite and albite biotite granite with peralkaline tendency, in contrast to their peraluminous equivalents. These cannot be explained by crystal-liquid fractionation processes and require the evolution of a Na-enriched fluid. It is suggested that in the albite riebeckite granite and the albite biotite granite the combined effect of F, Li and Rb along with other volatiles may have led to a lower crystallization temperature such that two separate alkali feldspars (albite and microcline) crystallized individually. Cassiterite and columbite mineralization occur mainly as magmatic disseminations within the terminal phases of the biotite granites and albite biotite granite. Diffused greisenization in association with quartz veins also carry cassiterite mineralization in the Tega and Timber Creek biotite granite phases. Although the magma may have supplied the ore elements and F for complexing, actual mineralization appears to be a product of postmagmatic processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call