Abstract

Geochemical and Sr-Nd isotopic data are reported for late Paleogene potassic lamprophyres from western Yunnan, southeastern margin of the Tibetan Plateau. These lamprophyres are mostly ultrapotassic in composition with K2O/Na2O = 2.1 to 5.2, except for a few samples with shoshonitic affinity showing slightly lower K2O/Na2O = 1.6 to 1.7. They are characterized by high initial 87Sr/86Sr ratios of 0.70624 to 0.70924; negative εNd(T) values of -1.7 to -4.6; enrichment in large-ion lithophile elements, light rare-earth elements, and Pb; and depletion in high-field-strength elements, resembling those of high K/Ti and low-Ti potassic magmas formed in subduction-related settings. These lamprophyres were generated by partial melting of a metasomatized, phlogopite-bearing spinel harzburgite lithospheric mantle source, followed by crystal fractionation and varying degrees of crustal assimilation. Relatively constant incompatible trace element ratios, such as Rb/ Sr (˜0.2), Rb/Ba (˜0.1), La/Sm (˜5), Th/K (˜0.0003), and Nb/La (˜0.2), and limited Sr and Nd isotopic compositions in the ultrapotassic rocks possibly reflect an evenly distributed metasomatized mantle source. With a general similarity in geochemistry, the potassic and ultrapotassic magmas from southeastern (40-30 Ma) and northern (<15 Ma) parts of the Tibetan Plateau display obvious differences in Th/U, Rb/Sr, and Sr-Nd isotopes. These differences in geochemistry and Sr-Nd isotopes suggest contrasting subcontinental lithosphere mantle bulk compositions beneath the southeastern and northern parts of the Tibetan Plateau, caused by metasomatism involving subducted sediments from distinct crustal provenances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call