Abstract

Numerous researchers have described the correlation between the short-term contact of nano-particulate (NP) matter in diverse coal phases and amplified death or hospitalizations for breathing disorders in humans. However, few reports have examined the short-term consequences of source-specific nanoparticles (NPs) on coal mining areas. Advanced microscopic techniques can detect the ultra-fine particles (UFPs) and nanoparticles that contain potential hazardous elements (PHEs) generated in coal mining areas. Secondary aerosols that cause multiple and complex groups of particulate matter (PM10, PM2.5, PM1) can be collected on dry deposition. In this study, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) were employed to detect and define the magnitude of particulate matters on restaurants walls at coal mines due to weathering interactions. The low cost self-made passive sampler (SMPS) documented several minerals and amorphous phases. The results showed that most of the detected coal minerals exist in combined form as numerous complexes comprising significant elements (e.g., Al, C, Fe, K, Mg, S, and Ti), whereas others exist as amorphous or organic compounds. Based on the analytical approach, the study findings present a comprehensive understanding of existing potential hazardous elements in the nanoparticles and ultrafine particles from coal mining areas in Brazil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.