Abstract

The Zafarghand Igneous Complex is composed of granite, granodiorite, diorite, and gabbro that contain many mafic microgranular enclaves. This complex was emplaced during the late Oligocene (24.6 Ma) to form part of the Urumieh–Dokhtar magmatic arc of Central Iran. The enclaves have spheroidal to elongated/lenticular shapes and are quenched mafic melts in felsic host magma as evidenced by fine-grained sinuous margins and (or) locally transitional and diffuse contacts with the host rocks, as well as having disequilibrium textures. These textures including oscillatory zoning with resorption surfaces on plagioclase, feldspar megacrysts with poikilitic and anti-rapakivi textures, mafic clots, acicular apatites, and small lath-shaped plagioclase in larger plagioclase crystals all indicate that the enclaves crystallized from mafic magma that was injected into and mixing/mingling with the host felsic magma. The studied rocks have calc-alkaline, metaluminous compositions, with an arc affinity. They are enriched in large ion lithophile elements, light rare-earth elements, and depleted in high field strength elements with significant negative Eu anomalies. The Sr–Nd isotopic data for all of the samples are similar and display ISr = 0.705123–0.705950 and eNd (24.6 Ma) = − 1.04–1.03 with TDM ~ 0.9–1.1 Ga. The host granites and enclaves are of mixed/mingled origin and most probably formed by the interaction between the juvenile lower crust with a basaltic composition and old lower or middle continental crust as a major component and lithospheric mantle as a minor component; this was followed by fractional crystallization and possibly minor crustal assimilation. The source seems to be comprised of about 90–80% of the basaltic magma and about 10–20% of lower/middle-crust-derived magma. Geochemical characteristics indicate that the intrusion of these rocks from a subduction zone setting below the Central Iran micro-continent was related to an active continental margin, although was transitional to a transtensional setting possibly due oblique convergence to slab rollback or break-off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.