Abstract
The Jinshajiang–Ailaoshan–Song Ma orogenic belt (JASB), as a vital segment of the eastern Paleo-Tethyan tectonic zone, is one of the most important zones in which to study the Paleo-Tethyan tectonic evolution. We have undertaken an integrated geochronological, petrological, and geochemical study of mafic rocks from the JASB to reveal the subduction and closure processes of the eastern Paleo-Tethyan Ocean during the Permian to Triassic. In conjunction with previous magmatic and metamorphic records in the JASB, three important tectonic stages are identified: (1) Early Permian to Early Triassic (ca. 288–248 Ma). Most of the Early Permian to Early Triassic mafic rocks have normal mid-ocean ridge basalt (N-MORB)- or enriched MORB (E-MORB)-like rare earth elements (REE) and trace element-normalized patterns with positive εNd(t) and εHf(t) values and negative Nb and Ta anomalies. Their La/Nb ratios and εNd(t) values show that approximately 3%–15% of slab-derived fluid accounts for the generation of these rocks. These characteristics suggest that the mafic rocks formed in an arc/back-arc basin setting at this stage. Additionally, the Early Permian mafic rocks are mainly exposed in the Jomda–Weixi–Yaxuanqiao–Truong Son magmatic rock belt (JYTB) on the western side of the JASB, indicating that the westward subduction of the Jinshajiang–Ailaoshan–Song Ma Paleo-Tethys Ocean (JASO) began in the Early Permian. Middle Permian mafic rocks are exposed in the Ailaoshan-Day Nui Con Voi metamorphic complex belt and the JYTB on both sides of the JASB. We propose that the bipolar subduction of the JASO occurred in the Middle Permian and ended in the Early Triassic. (2) Middle Triassic (ca. 248–237 Ma). The mafic rocks at this stage have LREE- and LILE-enriched patterns, negative Nb and Ta anomalies and negative εNd(t) values. Their variable εHf(t), εNd(t) values and La/Nb ratios show that these mafic rocks were highly affected by crustal material (ca. 16%). Considering the Middle Triassic high-pressure (HP) metamorphism and massive Al-enriched felsic magmatism in the JASB, these rocks may have formed in a collisional setting between the South China Block (SCB) and the North Qiangtang–Simao–Indochina Block (QSIB) during the Middle Triassic. (3) Late Triassic (ca. 235–202 Ma). The mafic rocks at this stage have negative εNd(t) and εHf(t) values and show terrestrial array characteristics. The εNd(t) values and La/Nb ratios show that approximately 30% of crustal components account for the generation of these rocks. Combined with the contemporaneous bimodal magma and metamorphism during the Late Triassic, we suggest that these rocks may have formed in a postcollisional extensional setting associated with magma diapir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.