Abstract

Geochemical and environmental magnetic studies were carried out to identify the effect of iron oxyhydroxides on arsenic mobilization in high arsenic aquifer system. Using high arsenic sediment samples from two boreholes, specifically drilled for this study, chemical composition and magnetic properties including magnetic susceptibility, saturation remnant magnetization, and isothermal remnant magnetization were measured. Results of correlation analysis of element contents show that arsenic and iron are closely associated with each other (r 2 = 0.40, α = 0.05, n = 21). In contrast, the correlation of phosphorus with iron (r = 0.11, α = 0.05, n = 21) and arsenic (r 2 = 0.18, α = 0.05, n = 21) was poor, which might result from competitive adsorption of phosphorus and arsenic on the surface of Fe-oxyhydroxides. The high correlation coefficients between arsenic contents and magnetic parameters suggest that the ferrimagnetic minerals including maghemite and hematite are the dominant carrier of arsenic in aquifer sediments. The results of sequential extraction experiments also revealed the association of arsenic with reducible iron oxides, such as maghemite and hematite in aquifer sediments. Therefore, under reducing conditions, reductive dissolution and desorption of arsenic from Fe-oxyhydroxides into the aqueous phase should be the dominant geochemical processes for its enrichment in groundwater at Datong.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.