Abstract

Global mean sea level has risen over the 20th century (Hay et al. 2015; Dangendorf et al. 2017) and under sustained greenhouse gas emissions it is projected to further accelerate throughout the 21st century (Church et al. 2013) with large spatial variations, significantly threatening coastal communities. Locally the effects of geocentric (sometimes also referred to absolute) sea level rise can further be amplified by vertical land motion (VLM) due to natural adjustments of the solid earth to the melting of the large ice-sheets during the last deglaciation (GIA) or local anthropogenic interventions such as groundwater or gas withdrawal (e.g. Santamaría-Gómez et al. 2017). Both, the observed and projected geocentric sea level rise as well as VLM are critically important for coastal planning and engineering, since only their combined effect determines the total threat of coastal flooding at specific locations. Furthermore, due large spatial variability of sea level, information is required not only at isolated tide gauge (TG) locations but also along the coastline stretches in between.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.