Abstract
Three parameters of the solar wind, proton number density n, Z-component of frozen-in magnetic field, in solar ecliptic coordinates and magnetic field variability ΔB, may be called geoactive parameters since each of them is responsible for a certain phase or stage of a geomagnetic storm. An undisturbed solar corpuscular stream differs from the quiet solar wind mainly in higher bulk velocity v; other parameters, in particular, n, Z and ΔB, are not enhanced in the stream. However, the examination of a number of geomagnetic storms shows that v is not a geoactive parameter. Hence the corpuscular stream itself is not more geoactive than the quiet solar wind. The retarding of corpuscular stream by the quiet solar wind results in various plasma deformations (compression, torsion, shear). This, in turn, leads to the creation, in the stream and ambient quiet solar wind, of geoactive zones. Each zone is characterized by the enhancement of some geoactive parameter. The entry of the Earth into a geoactive zone causes a corresponding phase or stage of a geomagnetic storm. The concept of geoactive zones is applied to the analysis of the geomagnetic storm of 8–10 July 1966.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.