Abstract

This paper applies nonlinear Bayesian inversion to seabed reflection data to estimate viscoelastic parameters of the upper sediments. The inversion provides maximum a posteriori probability (MAP) parameter estimates with uncertainties quantified in terms of marginal probability distributions, variances, and credibility intervals; interparameter relationships are quantified by correlations and joint marginal distributions. The inversion is applied to high-resolution reflectivity data from two sites in the Strait of Sicily. One site is characterized by low-speed sediments, resulting in data with a well-defined angle of intromission; the second is characterized by high-speed sediments, resulting in a critical angle. Data uncertainties are quantified using several approaches, including maximum-likelihood (ML) estimation, treating uncertainties as nuisance parameters in the inversion, and analysis of experimental errors. Statistical tests are applied to the data residuals to validate the assumed uncertainty distributions. Excellent results (i.e., small uncertainties) are obtained for sediment compressional-wave speed, compressional attenuation, and density; shear parameters are less well determined although low shear-wave speeds are indicated. The Bayesian analysis provides a quantitative comparison of inversion results for the two sites in terms of the resolution of specific geoacoustic parameters, and indicates that the geoacoustic information content is significantly higher for intromission data

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call