Abstract

A recent experiment was conducted at The University of Texas/Applied Research Laboratories test station located at Lake Travis, Austin, TX. Implosive (light bulb), explosive (firecracker), and tonal sources were recorded on a dual receiver system located on the bottom next to a range-independent underwater river channel. Inversion results of the broadband time series obtained over ranges less than 1.5 km were used to predict measured transmission loss at several tonal frequencies in the band from 250–1000 Hz. The average water depth was approximately 38 m along the channel during the experiment. Sound speed profiles were calculated from recorded temperature readings measured as a function of depth. Implosive source spectrums were measured and used to evaluate a model/data correlation cost function in a simulated annealing algorithm. Comparisons of inversion results using both a normal mode and a ray-based plane wave reflection coefficient forward model [Stotts et al., J. Acoust. Soc. Am. (submitted)] are discussed. Predicted transmission loss based on the inversion results are compared to the measured transmission loss. Differences between fluid and elastic layer bottom models will also be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.