Abstract

Pile foundations are utilized to support a variety of important infrastructure that are subjected to static and/or dynamic lateral loads due to lateral earth pressure, vessel impacts, traffic, waves, wind, and earthquakes. The pile lateral behavior under extreme lateral loading is governed by two main factors: the interaction between the pile and surrounding soil and the material inelasticity of the pile itself. This presentation covers the state of the art of modeling the nonlinear response of piles. In addition, it describes the recent development of an efficient and robust approach for the analysis of piles based on the beam on nonlinear Winkler (BNWF). In this work, a general cyclic BNWF model is developed to account for the important features of soil–pile-interaction problem including lateral load characteristics, soil cave-in, soil–pile side shear, gap formation, and strength and stiffness hardening/degradation. The inelastic behavior of pile material is also modeled effectively by implementing the advanced fiber technique. The capability of the developed model in predicting the response of piles under lateral static, cyclic and seismic loading is validated by comparing the computed results with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.