Abstract

Recently, a substantial increase in gallbladder cancer (GBC) cases has been reported in Bihar, India. The region's groundwater can naturally contain harmful concentrations of arsenic, which appears to be epidemiologically linked to the unusually high incidence. However, the root causes remain largely unexplored. Recent findings of uranium in the state's groundwater may also have associations. This study investigates the geo-spatial epidemiology of GBC in Bihar, India—with a focus on the correlation between environmental carcinogens, particularly arsenic and uranium in groundwater, and the incidence of GBC. Utilizing data from 8460 GBC patients' registration records over an 11-year period at a single health center, the research employs Semi-parametric Geographically Weighted Poisson Regression (S-GWPR) to account for non-stationarity associations and explores significant factors contributing to GBC prevalence at a subdistrict level. The S-GWPR model outperformed the standard Poisson regression model. The estimates suggest that arsenic and uranium concentrations in groundwater did not present significant associations; however, this could be due to the lower resolution of this data at the district level, necessitating higher resolution data for accurate estimates. Other socio-environmental factors included demonstrated significant regional heterogeneity in their association with GBC prevalence. Notably, each 1 % increase in the coverage of well- and canal-irrigated areas is associated with a maximum of 3.0 % and 5.2 % rise in the GBC incidence rate, respectively, likely attributable to carcinogen exposure from irrigation water. Moreover, distance to the health center and domestic electricity connections appear to influence the number of reported GBC cases. The latter suggests that access to electricity might have facilitated the use of groundwater pumps—increasing exposure to carcinogens. The results underscore the necessity for targeted health policies and interventions based on fine-resolution spatial analysis, as well as ongoing environmental monitoring and research to better understand the multifaceted risk factors contributing to GBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.