Abstract

Bird collisions with windows are an important conservation concern. Efficient mitigation efforts should prioritize retrofitting sections of glass exhibiting the highest mortality of birds. Most collision studies, however, record location meta-data at a spatial scale too coarse (i.e., compass direction of facing façade) to be useful for large buildings with complex geometries. Through spatial analysis of three seasons of survey data at a large building at a university campus, we found that GPS data were able to identify collision hotspots while compass directions could not. To demonstrate the broad applicability and utility of this georeferencing approach, we identified collision hotspots at two additional urban areas in North America. The data for this latter exercise were collected via the citizen science database, iNaturalist, which we review for its potential to generate the georeferenced data necessary for directing building retrofits and mitigating a major source of anthropogenic bird mortality.

Highlights

  • Through spatial analysis of three seasons of survey data at a large building at a university campus, we found that GPS data were able to identify collision hotspots while compass directions could not

  • To demonstrate the broad applicability and utility of this georeferencing approach, we identified collision hotspots at two additional urban areas in North America

  • The data for this latter exercise were collected via the citizen science database, iNaturalist, which we review for its potential to generate the georeferenced data necessary for directing building retrofits and mitigating a major source of anthropogenic bird mortality

Read more

Summary

Introduction

Hundreds of millions of annual bird-window collisions collectively represent a major source of anthropogenic bird mortality in North America, second only to predation by feral cats (Loss et al, 2014). Researchers have hypothesized two principle perception hazards that glass poses for birds: transparency and reflectivity (Snyder, 1946; Gelb & Delacretaz, 2009). Transparency is problematic when parallel windows (such as in a glass tunnel) allow birds to see completely through a solid structure, especially if vegetation is visible on the other side. The severity of the conservation concern associated with bird-window collisions has motivated recent efforts to better understand the phenomenon in order to invoke mitigation strategies (Gelb & Delacretaz, 2009; Bayne, Scobie & Rawson-Clark, 2012; Cusa, Jackson & Mesure, 2015; Ocampo-Peñuela et al, 2016; Sabo et al, 2016), which could include installing bird-deterrent films on old windows (retrofitting) or bird-friendly architectural design. In the absence of any binding regulation for bird-friendly construction, mitigation is almost exclusively carried out on a voluntary basis by individual property owners or managers as an act of environmental charity or public relations (i.e., ‘‘greening’’)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call