Abstract

Geohazards pose significant risks to communities and infrastructure, emphasizing the need for accurate susceptibility assessments to guide land-use planning and hazard management. This study presents a comprehensive method that combines Variable Weight Theory (VWT) with Analytic Hierarchy Process (AHP) to assess geo-environment vulnerability based on susceptibility to various geohazards. The method was applied to the Pearl River Delta in China, resulting in the classification of areas into high vulnerability (5961.85 km2), medium vulnerability (19,227.93 km2), low vulnerability (14,892.02 km2), and stable areas (1616.19 km2). The findings demonstrate improved accuracy and reliability compared to using AHP alone. ROC curve analysis confirms the enhanced performance of the integrated method, highlighting its effectiveness in discerning susceptibility levels and making informed decisions in hazard preparedness and risk reduction. Additionally, this study assessed the risks posed by geohazards to critical infrastructures, roads, and artificial surfaces, while discussing prevention strategies. However, this study acknowledges certain limitations, including the subjective determination of its judgment matrix and data constraints. Future research could explore the integration of alternative methods to enhance the objectivity of factor weighting. In practical applications, this study contributes to the understanding of geo-environment vulnerability assessments, providing insight into the intricate interplay among geological processes, human activities, and disaster resilience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call