Abstract

We have analyzed the Y/Ho-ratios in bulk chondrites, chondrules and four Ca- and Al-rich inclusions (CAIs) from carbonaceous and unequilibrated ordinary and enstatite chondrites (EC) by laser ablation inductively coupled mass spectrometry (LA-ICPMS). We demonstrate that bulk rock sample preparation by containerless melting is a suitable method for preparation of bulk rock samples for high-precision LA-ICPMS. Bulk chondrites have variable Y/Ho-ratios. Carbonaceous chondrites (CI1, CM2, CV3, and CK4) have a common Y/Ho-ratio (25.94 ± 0.08, 2 σ) that is regarded as the solar system Y/Ho-ratio. The Y/Ho-ratio increases from carbonaceous, through ordinary (LL, L, H) to enstatite chondrites (EL6), which show the highest Y/Ho-ratio of 27.25. We discuss the result with respect to the origin of fractionation of Re and Os between chondrite groups. Within analytical error, Y and Ho show a good correlation in OC and CV3 chondrules and define an Y/Ho-ratio of 26.22 ± 0.40 (2 σ). Y/Ho-fractionation in Ca- and Al-rich inclusions is related to differences in volatility. The bulk silicate Earth is suggested to have a solar Y/Ho-ratio and links the Earth with carbonaceous chondrites. Y/Ho variations in primitive and differentiated terrestrial igneous rocks are discussed in framework of incompatibility of Y and Ho during partial melting. Applicability of Y/Ho as tracer for or against a sedimentary origin of the putative host rock of the Earth’s oldest traces of life from the island of Akilia is briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call