Abstract
To distinguish the contributions to the generalized Hurwitz number of the source Riemann surface with different genus, by observing carefully the symplectic surgery and the gluing formulas of the relative GW-invariants, we define the genus expanded cut-and-join operators. Moreover all normalized the genus expanded cut-and-join operators with same degree form a differential algebra, which is isomorphic to the central subalgebra of the symmetric group algebra. As an application, we get some differential equations for the generating functions of the generalized Hurwitz numbers for the source Riemann surface with different genus, thus we can express the generating functions in terms of the genus expanded cut-and-join operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.