Abstract
The theory of solutions of genuinely nonlinear, strictly hyperbolic systems of two conservation laws will be developed in this chapter at a level of precision comparable to that for genuinely nonlinear scalar conservation laws, expounded in Chapter XI. This will be achieved by exploiting the presence of coordinate systems of Riemann invariants and the induced rich family of entropy-entropy flux pairs. The principal tools in the investigation will be generalized characteristics and entropy estimates. The analysis will reveal a close similarity in the structure of solutions of scalar conservation laws and pairs of conservation laws. Thus, as in the scalar case, jump discontinuities are generally generated by the collision of shocks and/or the focusing of compression waves, and are then resolved into wave fans approximated locally by the solution of associated Riemann problems. The total variation of the trace of solutions along space-like curves is controlled by the total variation of the initial data, and spreading of rarefaction waves affects total variation, as in the scalar case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.