Abstract

This paper introduces a general, nonlinear subgrid-scale (SGS) model, having boundedartificial viscosity, for the numerical simulation of convection-dominated problems. We also present a numerical comparison (error analysis and numerical experiments) between this model and the most common SGS model of Smagorinsky, which uses a p-Laplacian regularization. The numerical experiments for the 2-D convection-dominated convection-diffusion test problem show a clear improvement in solution quality for the new SGS model. This improvement is consistent with the bounded amount of artificial viscosity introduced by the new SGS model in the sharp transition regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.