Abstract

We introduce a constructive procedure that maps all spatial correlations of a broad class of states into temporal correlations between general quantum measurements. This allows us to present temporal phenomena analogous to genuinely multipartite nonlocal phenomena, such as Greenberger-Horne-Zeilinger correlations, which do not exist if only projective measurements on qubits are considered. The map is applied to certain lattice systems in order to replace one spatial dimension with a temporal one, without affecting measured correlations. We use this map to show how repeated application of a 1d-cluster-gate leads to universal one-way quantum computing when supplemented with the general measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.