Abstract

Laccase has received extensive attention in pollutant degradation due to its high efficiency and environmental friendliness, but free laccase has poor stability, easy inactivation, and difficulty in recycling, which limited its application. It was a smart strategy to construct a synergistic system for the efficient adsorption and degradation of pollutants by enzyme immobilization to improve the stability and recyclability of the enzyme. In this study, the materials were synthesized by a one-step co-precipitation method. With Cu-MOF as the main body, Co2+ was introduced to construct bimetallic CoCu-MOF as the protective carrier of the enzyme. The enzyme-carrying capacity and enzyme activity of Lac@CoCu-MOF were 2-fold and 3.5-fold higher than those of Lac@Cu-MOF, respectively. Lac@MOF composites had a good protective effect on enzyme in various interfering environments. At pH = 7, free laccase was completely inactivated and Lac@CoCu-MOF maintained 51.76% enzyme activity. In addition, the removal rate of Congo red by Lac@CoCu-MOF reached 90 % in 1 h at pH = 4 % and 95 % in 5 h at pH = 7, and the final TOC mineralization rate reached 86.05 %. After six cycles, the degradation rate of Lac@CoCu-MOF remained above 75 %. Therefore, Lac@CoCu-MOF was constructed with the advantages of enzyme immobilization (enhanced stability and easy operation), material adsorption, and biocatalysis (fast diffusion and high activity), which has great guiding significance for the industrial application of enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.