Abstract

Given that global prevalence of Parkinson's disease (PD) is expected to rise over the next few decades, understanding the mechanisms and causes of PD is critical. With emphasis on gut-brain axis, we sought to assess the impact of gentisic acid (GA), a diphenolic compound generated from benzoic acid, in rotenone (Rot) induced PD model in zebrafish. For thirty days, adult zebrafish were exposed to GA and rotenone. Tox-Track program was used to analyze locomotor behaviors in the control, GA, Rot, and Rot + GA groups. LC-MS/MS was performed in brain and intestinal tissues. Proteome Discoverer 2.4 was used to analyze raw files, peptide lists were searched against Danio rerio proteins. Protein interactions or annotations were obtained from STRING database. Tyrosine hydroxylase (Th) staining was performed immunohistochemically in the brain. PD-related gene expressions were determined by RT-PCR. Lipid peroxidation, nitric oxide, superoxide dismutase, glutathione S-transferase, and acetylcholinesterase were measured spectrophotometrically. Improved locomotor behaviors were observed by GA treatment in Rot group as evidenced by increased average speed, exploration rate, and total distance. 5214 proteins were identified in intestinal tissues, 4114 proteins were identified in brain by LC-MS/MS. Rotenone exposure altered protein expressions related to oxidative phosphorylation in brain and intestines. Protein expressions involved in ferroptis and actin cytoskeleton changed in brain and intestines. Altered protein expressions were improved by GA. GA ameliorated Th-immunoreactivity in brain, improved park2, park7, pink1, and lrrk2 expressions. Our results show that GA may be a candidate agent to be evaluated for its potential protective effect for PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call