Abstract

Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds. Employing the XRD technique, HAP was detected by obtaining the characteristic diffraction maximums. Good antibacterial activity of the composite coating loaded with antibiotic (HAP/CS/Gent) was confirmed against Staphylococcus aureus and Escherichia coli, pointing to the high potential for bioapplication. Introduction of gentamicin in HAP/CS/Gent coating caused very mild cytotoxicity in the tested cell lines MRC-5 and L929. MTT testing was used to evaluate cell viability, and HAP/CS was classified as noncytotoxic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.