Abstract
Seven (27%) of 26 gentamicin-resistant human clinical isolates of Escherichia coli were resistant to the veterinary aminoglycoside antibiotic apramycin. A gentamicin-resistant Klebsiella pneumoniae isolate from a patient infected with gentamicin/apramycin-resistant E. coli was also resistant to apramycin. DNA hybridisation studies showed that all gentamicin/apramycin-resistant isolates contained a gene encoding the enzyme 3-N-aminoglycoside acetyltransferase type IV (AAC[3]IV) that mediates resistance to gentamicin and apramycin in bacteria isolated from animals. Seven of the eight gentamicin/apramycin-resistant isolates were also resistant to the veterinary antihelminthic agent hygromycin B, a phenomenon observed previously in gentamicin/apramycin-resistant Enterobacteriaceae isolated from animals. Resistance to gentamicin/apramycin and hygromycin B was co-transferable in six of the isolates. Restriction enzyme analysis of plasmids in apramycin-resistant transconjugants derived from E. coli and K. pneumoniae isolates from the same patient were virtually identical, suggesting that inter-generic transfer of plasmids encoding apramycin resistance had occurred in vivo. These findings support the view that resistance to gentamicin and apramycin in clinical isolates of E. coli results from the spread of resistant organisms from animals to man, with subsequent inter-strain or inter-species spread, or both, of resistance genes on transferable plasmids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.