Abstract

Hair cells of the lateral line system in fish may differ in their susceptibility to damage by aminoglycoside antibiotics. Gentamicin has been reported to damage hair cells within canal neuromasts, but not those within superficial neuromasts. This finding, based on SEM imaging, indicates a distinction in the physiology of hair cells between the two classes of neuromast. Studies concerned with the individual roles of canal and superficial neuromasts in behavior have taken advantage of this effect in an attempt to selectively disable canal neuromasts without affecting superficial neuromast function. Here we present an experimental test of the hypothesis that canal neuromasts are more vulnerable to gentamicin than superficial neuromasts. We measured the effect of gentamicin exposure on hair cells using vital stains (DASPEI and FM1-43) in the neuromasts of Mexican blind cave fish ( Astyanax fasciatus) and zebrafish ( Danio rerio). Contrary to the findings of prior studies that used SEM, gentamicin significantly reduced dye uptake by hair cells of both canal and superficial neuromasts in both species. Therefore, lateral line hair cells of both neuromast types are vulnerable to gentamicin ototoxicity. These findings argue for a re-evaluation of the results of studies that have used gentamicin to differentiate the roles of the two classes of neuromast in fish behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call