Abstract
Abstract This paper describes a digital curation study aimed at comparing the composition of large Web corpora, such as enTenTen, ukWac or ruWac, by means of automatic text classification. First, the paper presents a Deep Learning model suitable for classifying texts from large Web corpora using a small number of communicative functions, such as Argumentation or Reporting. Second, it describes the results of applying the automatic classification model to these corpora and compares their composition. Finally, the paper introduces a framework for interpreting the results of automatic genre classification using linguistic features. The framework can help in comparing general reference corpora obtained from the Web and in comparing corpora across languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.