Abstract
Next-generation sequencing technologies produce a large number of noisy reads from the DNA in a sample. Metagenomics and population sequencing aim to recover the genomic sequences of the species in the sample, which could be of high diversity. Methods geared towards single sequence reconstruction are not sensitive enough when applied in this setting. We introduce a generative probabilistic model of read generation from environmental samples and present Genovo, a novel de novo sequence assembler that discovers likely sequence reconstructions under the model. A nonparametric prior accounts for the unknown number of genomes in the sample. Inference is performed by applying a series of hill-climbing steps iteratively until convergence. We compare the performance of Genovo to three other short read assembly programs in a series of synthetic experiments and across nine metagenomic datasets created using the 454 platform, the largest of which has 311k reads. Genovo's reconstructions cover more bases and recover more genes than the other methods, even for low-abundance sequences, and yield a higher assembly score. Supplementary Material is available at www.liebertoinline.com/cmb .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.