Abstract

BackgroundThe genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR) Analysis (MLVA) assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary.ResultsGenotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats.ConclusionIn a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the B branch was described, and two new branches, D and E, are proposed. Owing to the upgrading achieved here, precise genotyping can now be produced either by automated capillary electrophoresis, or by the more accessible but slower and for some markers slightly less accurate agarose gel methodology.

Highlights

  • The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult

  • In order to have a more rapid and accurate genotyping system for B. anthracis we propose an automated capillary based method using essentially the panel of loci described by Le Flèche et al [12], with the addition of 4 new markers, and apply the method to collections of strains from Italy and France

  • MLVA25 genotyping by capillary electrophoresis A collection of 160 B. anthracis isolates, comprising strains from Italy and France and a few reference strains were analyzed to generate MLVA typing data

Read more

Summary

Introduction

The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR) Analysis (MLVA) assay based on 20 markers was previously described It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. The importance of strain differentiation of biothreat agents including B. anthracis is increasingly recognized as a way for identifying the source of the attack, as illustrated by the 2001 events and, earlier on, by the Sverdlovsk [5] and Tokyo [6] events. Such events together suggested how crucial is the development of microbial forensics for biosecurity. Measures aimed at limiting the risk of deliberate release of dangerous pathogens, would require that isolates kept in different institutions around the world are precisely genotyped, and that the genotype profiles are shared by all countries having accepted to follow these rules, for strain accountability purposes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call