Abstract

A gold nanoparticle-filled capillary electrophoresis method combined with three multiplex polymerase chain reactions (PCRs) was established for simultaneous diagnosis of five common α-thalassemia deletions, including the -α 3.7 deletion, -α 4.2 deletion, Southeast Asian (- - SEA), Filipino (- - FIL) and Thai (- - THAI) deletions. Gold nanoparticles (GNPs) were used as a pseudostationary phase to improve the resolution between DNA fragments in a low-viscosity polymer. To achieve the best CE separation, several parameters were evaluated for optimizing the separation conditions, including the capillary coating, the concentrations of polymer sieving matrix, the sizes and concentrations of GNPs, the buffer concentrations, and the pH. The final CE method for separating a 200-base pair (bp) DNA ladder and α-thalassemia deletions used a DB-17 capillary, 0.6% poly(ethylene oxide) (PEO) prepared in a mixture of GNP 32nm solution and glycine buffer (25 mM, pH 9.0) (80:20, v/v) as the sieving matrix with 1 μM YO-PRO-1 for fluorescence detection; the applied voltage was −10 kV (detector at anode side) and the separation temperature was 25 °C. Under these optimal conditions, 15 DNA fragments with sizes ranging from 0.2 kb to 3.0 kb were resolved within 11.5 min. The RSDs of migration times were less than 2.81%. A total of 21 patients with α-thalassemia deletions were analyzed using this method, and all results showed good agreement with those obtained by gel electrophoresis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call