Abstract

Exploration of genetic resources for micronutrient concentrations facilitates the breeding of nutrient-dense crops, which is increasingly seen as an additional, sustainable strategy to combat global micronutrient deficiency. In this work, we evaluated genotypic variation in grain nutrient concentrations of 20 Brazil wheat (Triticum aestivum L.) accessions in response to zinc (Zn) and Zn plus selenium (Se) treatment. Zn and Se concentrations in grains exhibited 2- and 1.5-fold difference, respectively, between these wheat accessions. A variation of up to 3-fold enhancement of grain Zn concentration was observed when additionally Zn was supplied, indicating a wide range capacity of the wheat lines in accumulating Zn in grains. Moreover, grain Zn concentration was further enhanced in some lines following supply of Zn plus Se, showing stimulative effect by Se and the feasibility of simultaneous biofortification of Zn and Se in grains of some wheat lines. In addition, Se supply with Zn improved the accumulation of another important micronutrient, iron (Fe), in grains of half of these wheat lines, suggesting a beneficial role of simultaneous biofortification of Zn with Se. The significant diversity in these wheat accessions offers genetic potential for developing cultivars with better ability to accumulate important micronutrients in grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.