Abstract

Wood density is considered as one of the most important wood properties which affects the properties and value of both fibrous and solid wood products. The present study was intended for evaluating the possibilities of improving wood quality and growth of poplar hybrids. Wood density components of individual growth rings (minimum and maximum wood density, average ring density) and growth traits (tree height, dbh, stem volume) were measured in four 10- and 12-year-old clonal trials of four poplar hybrids, Populus deltoides × P. nigra, P. trichocarpa × P. deltoides, P. maximowiczii × P. balsamifera, and P. balsamifera × P. nigra, as well as P. deltoides. Wood density components of individual growth rings were obtained from microdensitometeric profiles measured with a direct reading X-ray densitometer. Site had a moderately significant effect on wood density and a highly significant effect on tree growth. The hybrid effect was highly significant ( P < 0.001) for most traits. Minimum, maximum and weighted wood densities were found to be under strong genetic control, with clonal repeatabilities varying between 0.45 and 0.81. The coefficient of genotypic variation (CV G) for wood density at individual sites ranged from 4.0 to 6.8%, whereas CV G for dry fiber weight (mass) reached 32.8% with repeatabilities of up to 0.67. A small but significant ( P = 0.028) hybrid × environment interaction was found for dry fiber weight. The highest ecological sensitivity was found for P. deltoides × P. nigra, with ecovalence reaching 32.3%. Clonal × environment interaction was significant for weighted, average, and minimum wood density. Significant negative genotypic correlations between stem volume and wood density ranged from −0.39 to −0.74. One possible strategy in tree breeding would be to maximize wood fiber production through selection for dry fiber weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call