Abstract

Phosphorus (P) efficiency (relative growth), which is described as the ratio of shoot dry matter or grain yield at deficient P supply to that obtained under adequate P supply, was compared in 25 winter wheat cultivars grown under greenhouse and field conditions with low and adequate P levels in a P-deficient calcareous soil. Adequate P supply resulted in significant increases in shoot dry weight and grain yield under both experimental conditions. In the greenhouse experiment, the increases in shoot dry weight under adequate P supply (80 mg kg−1) were from 0% (cv: C-1252) to 34% (cv: Dagdas). Under field conditions, the cultivars showed much greater variation in their response to adequate P supply (60 kg ha−1): the increases in shoot dry weight and grain yield with adequate P supply were between −2% (cv: Sivas-111/33) and 25% (cv: Kirac-66) for shoot dry matter production at the heading stage and between 0% (cv: Kirkpinar-79) and 76% (cv: Kate A-1) for grain yield at maturity. Almost all cultivars behaved totally different in their response to P deficiency under greenhouse and field conditions. Phosphorus efficiency ratios (relative growth) under greenhouse conditions did not correlate with the P efficiency ratios under field conditions. In general, durum wheat cultivars were found to be more P efficient compared with bread wheat cultivars. The results of this study indicated that there is wide variation in tolerance to P deficiency among wheat cultivars that can be exploited in breeding new wheat cultivars for high P deficiency tolerance. The results also demonstrated that P efficiency was expressed differently among the wheat cultivars when grown under greenhouse and field conditions and, therefore, special attention should be paid to growth conditions in screening wheat for P efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call