Abstract

In response to herbivore damage or stress, plants may express physiological or morphological changes known as induced responses. We tested whether previous herbivory by the aphid Myzus persicae differentially altered the expression of resistance and susceptibility among five genotypes of peach that differ in their resistance phenotype (avoidance resistance, antibiosis resistance or susceptibility). We measured behavioural and performance parameters of aphid success on plants previously infested by conspecifics as compared to uninfested controls. Significant variation was found both among genotypes and among resistance phenotype, including between genotypes showing a same resistance phenotype. Genotypes with avoidance resistance showed either induced resistance to aphid settling or no response. Genotypes with antibiosis resistance showed induced susceptibility to aphid settling, but the effects of previous herbivory on aphid development were either positive or negative depending on the genotype. In the susceptible genotype, most parameters of aphid settlement and performance, including reproduction, were positively influenced by previous herbivory. Using electronic recording, the aphid probing behaviour was examined to tentatively identify host plant tissues most likely to play a role in induced defenses. Probing behaviour was significantly affected by plant genotype, previous herbivory, and their interaction, indicating complex relations between the two factors. In the genotypes with avoidance resistance, aphids were deterred before they reach the phloem. In the genotypes expressing susceptibility or antibiosis resistance, previous herbivory triggered instead the induction of a phloem‐mediated response, that however diverged depending on the resistance status (facilitation or reduction of phloem sap uptake respectively). Genotypic variation in induction found in the peach‐M. persicae system establishes a useful framework to improve our knowledge of the ecological role of induced plant responses to aphids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call