Abstract

As part of a program to select ponderosa pine (Pinus ponderosa Dougl. ex Laws.) genotypes for improved drought tolerance, we examined physiological and morphological characteristics of 12 half-sib families of ponderosa pine from four seed sources; New Mexico, South Dakota, Nebraska, and Wyoming. We analyzed genetic variation in carbon isotope discrimination (Δ), photosynthetic gas exchange, needle morphology, and growth of 2-year-old seedlings from the four seed sources grown under two levels of moisture availability. To gain a better understanding of within-provenance variation and identify opportunities to refine selection strategies, we also examined family within seed source variation in the traits. Water stress significantly (P < 0.05) reduced net photosynthesis (A), needle conductance to water vapor (gwv), carbon isotope discrimination (Δ), and growth of the seedlings as compared to well-watered seedlings. However, instantaneous water use efficiency (A/gwv) did not differ between water treatments. Seedlings from New Mexico had significantly lower gwv and higher A/gwv than seedlings from the other sources. Carbon isotope discrimination was lowest for seedlings from New Mexico and Nebraska. Families within seed sources varied significantly in A, gwv, stomatal density, needle length, height increment, and Δ. Carbon isotope discrimination was significantly correlated with gwv but not with A, supporting results from mature trees suggesting that variation in Δ in ponderosa pine is more related to gwv than to A. Seed source × water treatment interactions were not observed for any of the traits analyzed. These results support our previous assertion that genotype × environment interaction in Δ of mature ponderosa pine trees from these sources grown in Nebraska and Oklahoma was related to factors other than moisture availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.