Abstract
Drought is a major limiting factor for turfgrass growth. Understanding genetic variations in physiological responses of turfgrass to drought stress would facilitate breeding and management programs to improve drought resistance. This study was designed to evaluate responses of abscisic acid (ABA) accumulation, water relations, and gas exchange to drought stress in four Kentucky bluegrass (Poa pratensis L.) cultivars differing in drought resistance. Plants of `Midnight' and `A82-204' (drought resistant) and `Brilliant' and `RSP' (drought susceptible) were grown under well-watered (control) or drought stress conditions for 25 days in growth chambers. Turf quality, leaf water potential (Ψleaf), relative water content (RWC), leaf net photosynthesis rate (Pn), and stomatal conductance (gs) declined, while electrolyte leakage (EL) increased during drought progression in all cultivars. The magnitudes of the change in these parameters were greater for `RSP' and `Brilliant' than for `Midnight' and `A82-204'. Leaf ABA content in `RSP' and `Brilliant' increased sharply after 2 days of stress to as much as 34 times the control level at 10 days of drought. Leaf ABA content in `Midnight' and `A82-204' also increased with drought, but to a lesser extent than in the other two cultivars. Leaf ABA level was negatively correlated with Ψleaf and gs. `A82-204' had a significantly lower ABA accumulation rate with changes in Ψleaf during drought compared to `Midnight', `RSP' and `Brilliant'; however, no differences in ABA accumulation rate were detected among the latter three cultivars. In addition, leaf gs was more sensitive to changes in ABA accumulation in `Midnight' and `A82-204' than in `RSP' and `Brilliant'. These results demonstrated that drought tolerant cultivars of Kentucky bluegrass were characterized by lower ABA accumulation and less severe decline in Ψleaf, Pn, gs, and turf quality during drought stress than drought sensitive cultivars. Drought tolerance of Kentucky bluegrass could be related to sensitivity of stomata to endogenous accumulation of ABA under drought stress conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Horticultural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.