Abstract
Genotypic resistance testing has become part of routine clinical management of HIV-infected patients. Focussing on observational studies, this review looks at recent advances in this area. Translation of the nucleotide sequence generated by the resistance test into clinically useful information remains a major challenge. A recent key development is the availability of therapy optimization tools to predict regimens that are most likely to achieve virological suppression. Standard genotypic resistance testing only examines protease and part of reverse transcriptase; as drugs are licensed to further targets, it has become necessary to expand the repertoire for testing. Traditionally, genotypic testing has not been attempted at viral loads less than 1000 copies/ml, but recent studies indicate that major mutations are often detected at much lower levels. Similarly, various methods have been developed for the detection of minority variants including allele-specific PCR, single-genome sequencing, and ultra-deep sequencing. The technology and interpretation of genotypic resistance tests is in a phase of rapid development. It remains uncertain which of these developments will become part of routine clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.