Abstract

This study investigated the effects of ethylene in storage and 1-methylcyclopropene (1-MCP) pretreatment on post-storage leaf senescence as measured by changes in photosynthesis and chloroplast degradation of two Aglaonema cultivars. Potted plants of ‘Chalit's Fantasy’ and ‘White Tip’ with or without 1-MCP treatment (600nLL−1 1-MCP for 6h) were exposed to 3.0μLL−1 ethylene, while being stored for 5d at 16°C in the dark, and then placed under an indoor environment for further observation. Plants that did not receive 1-MCP and ethylene served as controls. Ethylene did not affect the stomatal conductance in either cultivar. Ethylene reduced the net CO2 assimilation rate and Fv/Fm (potential photochemical efficiency of photosystem II) in ‘White Tip’, but not in ‘Chalit's Fantasy’. Chloroplast number in a palisade or spongy mesophyll cell did not differ among treatments in ‘Chalit's Fantasy’. However, ethylene-treated ‘White Tip’ had fewer chloroplasts in the mesophyll cells, had more and larger plastoglobules in the chloroplasts, and had looser granal stacking with enlarged thylakoid lumens. ‘Chalit's Fantasy’ plants that were treated with 1-MCP before exposure to ethylene had higher net CO2 assimilation rates and stomatal conductance than the control or plants that were exposed to ethylene without 1-MCP pretreatment. 1-MCP pretreatment mitigated the injurious effect of ethylene on ‘White Tip’ by increasing net CO2 assimilation rate and Fv/Fm, and maintaining the quantity and structural integrity of chloroplasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call