Abstract

This experiment was conducted to evaluate the varietal differences of spikelet sterility response to air temperature during the reproductive stage. Six rice varieties differing in maturity group (early-maturing; Unkwangbyeo, Odaebyeo, medium-maturing; Andabyeo, Hwasungbyeo, and mid-late maturing; Donganbyeo, Chuchungbyeo) were grown under ambient temperature (AT) conditions before being transferred to the temperature-controlled plastic houses. For the synchronization of the growth stage, 15 rice seedlings (2011) and 10 rice seedlings (2012) per pot were transplanted in a circle and only main stems were grown by removing tillers at early stage of their emergence. At the initial heading stage, pots for each variety were transferred to the four plastic houses that were controlled to AT, AT + 1.5°C, AT + 3.0°C, and AT + 5.0°C, respectively. Spikelet fertility was significantly decreased due to high temperature-induced spikelet sterility at AT + 3.0 and/or AT + 5.0°C treatment during flowering time in 2011. Spikelet fertility in 2012 was much lower than in 2011 even at the AT treatment because of high temperature-induced spikelet sterility at the micosporogenesis stage. Critical temperature (Tc) that induces 50% spikelet sterility at flowering time was estimated by fitting the temperature response of spikelet fertility to a logistic function. Tc ranged from 34.6°C (Odaebyeo) to 39.7°C (Hwasungbyeo), Odaebyeo being significantly more sensitive to high temperature-induced spikelet sterility than the other varieties. This result has shown that response of spikelet sterility to higher temperature is different according to rice varieties. However, further study should be done to arrive at a concrete conclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.