Abstract

Streptococcus didelphis was reported once as related to severe infections in opossums. Thus, we present the first comprehensive whole-genome characterization of clinical S. didelphis strains isolated from white-eared opossums (Didelphis albiventris). Long-read whole-genome sequencing was performed using the MinION platform, which allowed the prediction of several genomic features. We observed that S. didelphis genomes harbor a cluster for streptolysin biosynthesis, and a conserved genomic island with genes involved in transcriptional regulation (arlR) and transmembrane transport (bcrA). Antimicrobial resistance genes for several drug classes were found including beta-lactam, which is the main antimicrobial class used in Streptococcus spp. infections; however no phenotypical resistance was observed. In addition, we predicted the presence of 33 virulence factors in the analyzed genomes. High phylogenetic similarity was observed between clinical and reference strains, yet no clonality was suggested. We also proposed dnaN, gki, pros, and xpt as housekeeping candidates to be used in S. didelphis sequence typing. This is the first whole-genome characterization of S. didelphis, whose data provides important insights on its pathogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.