Abstract

Infectious spleen and kidney necrosis virus (ISKNV) is a species within the genus Megalocytivirus (family Iridoviridae), which causes high mortality disease in many freshwater and marine fish species. ISKNV was first reported in Asia and is an emerging threat to aquaculture with increasing global distribution, in part due to its presence in ornamental fish with clinical and subclinical infections. The species ISKNV includes three genotypes: red seabream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), and ISKNV. There is an increasing overlap in the recognized range of susceptible fish hosts and the geographic distribution of these distinct genotypes. To better understand the disease caused by ISKNV, a nucleic acid hybridization capture enrichment was used prior to sequencing to characterize whole genomes from archived clinical specimens of aquaculture and ornamental fish from Southeast Asia (n = 16). The method was suitable for tissue samples containing 2.50 × 104–4.58 × 109 ISKNV genome copies mg−1. Genome sequences determined using the hybridization capture method were identical to those obtained directly from tissues when there was sufficient viral DNA to sequence without enrichment (n = 2). ISKNV genomes from diverse locations, environments, and hosts had very high similarity and matched established genotype classifications (14 ISKNV genotype Clade 1 genomes with >98.81% nucleotide similarity). Conversely, two different genotypes were obtained at the same time and location (RSIV and ISKNV from grouper, Indonesia with 92.44% nucleotide similarity). Gene-by-gene analysis with representative ISKNV genomes identified 59 core genes within the species (>95% amino acid identity). The 14 Clade 1 ISKNV genomes in this study had 100% aa identity for 92–105 of 122 predicted genes. Despite high overall sequence similarity, phylogenetic analyses using single nucleotide polymorphisms differentiated isolates from different host species, country of origin, and time of collection. Whole genome studies of ISKNV and other megalocytiviruses enable genomic epidemiology and will provide information to enhance disease control in aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call