Abstract
In a field rain-fed trial with 15 cassava cultivars, leaf gas exchanges and carbon isotope discrimination (Δ) of the same leaves were determined to evaluate genotypic and within-canopy variations in these parameters. From 3 to 7 months after planting leaf gas exchange was measured on attached leaves from upper, middle, and lower canopy layers. All gas exchange parameters varied significantly among cultivars as well as canopy layers. Net photosynthetic rate (P N) decreased from top canopy to bottom indicating both shade and leaf age effects. The same trend, but in reverse, was found with respect to Δ, with the highest values in low canopy level and the lowest in upper canopy. There were very significant correlations, with moderate and low values, among almost all these parameters, with P N negatively associated with intercellular CO2 concentration (C i), ratio of C i to ambient CO2 concentration C i/C a, and Δ. Across all measured leaves, Δ correlated negatively with leaf water use efficiency (WUE = photosynthesis/stomatal conductance, g s) and with g s, but positively with C i and C i/C a. The later parameters negatively correlated with leaf WUE. Across cultivars, both P N and correlated positively with storage root yield. These results are in agreement with trends predicted by the carbon isotope discrimination model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.