Abstract

Escherichia coli O157:H7 is a foodborne pathogen distinguished from typical E. coli by the production of Shiga toxins (Stx) and the inability to ferment sorbitol (SOR) and to express beta-glucuronidase (GUD) activity. An allele-specific probe for the GUD gene (uidA) and multilocus enzyme electrophoresis were used to elucidate stages in the evolutionary emergence of E. coli O157: H7. A point mutation at +92 in uidA was found only in O157:H7 and its nonmotile relatives, including a SOR+ O157:H clone implicated in outbreaks of hemolytic-uremic syndrome in Germany. The results support a model in which O157:H7 evolved sequentially from an O55:H7 ancestor, first by acquiring the Stx2 gene and then by diverging into two branches; one became GUD- SOR- , resulting in the O157:H7 clone that spread worldwide, and the other lost motility, leading to the O157:H clone that is an increasing public health problem in Europe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.