Abstract

A real-time genotype-specific polymerase chain reaction (PCR) assay combined with high-resolution melting (HRM) analysis was developed to assess the most common genotypes of nervous necrosis viruses or nodaviruses. Nodaviruses are the causal agents of viral nervous necrosis infections, which have been wreaking havoc in the aquaculture industry worldwide, with fish mortality up to 100%. The four different genotypes of nodaviruses correlate with differences in viral pathogenicity. Therefore, rational development of effective vaccines and diagnostics requires analysis of genetic variation among viruses. The aim of the present study was to develop a real-time tetra-primer genotype-specific PCR assay for genotype identification. Four primers were utilized for simultaneous amplification of nodavirus genotype-specific products in a single closed-tube PCR after a reverse-transcription reaction using RNA isolated from fish samples. For high-throughput sample analysis, SYBR Green-based real-time PCR was used in combination with HRM analysis. The assay was evaluated in terms of specificity and sensitivity. The analysis resulted in melting curves that were indicative of each genotype. The detection limit when using reference plasmids was 100 ag/µL for both genotypes, while the sensitivity of the assays when testing a complex mixture was 10fg/µL for red-spotted grouper nervous necrosis virus (RGNNV) and 100fg/µL for striped jack nervous necrosis virus (SJNNV). To test the capability of this method under real-world conditions, 58 samples were examined. All samples belonged to the RGNNV genotype, which was fully validated. The results were in full agreement with genotyping by reference methods. The proposed methodology provides a rapid, sensitive, specific, robust and automatable assay for nodavirus genotyping, making it a useful tool for diagnosis and screening for epidemiological studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.