Abstract

To establish a high-efficiency system of isolated microspore culture for different barley genotypes, we investigated the effects of nitrogen sources and concentrations on callus induction and plant regeneration in different barley genotypes. The results showed that the organic nitrogen sources greatly increased the callus induction, and the great reduction of total nitrogen sources would significantly decrease the callus induction. And the further optimization experiments revealed that the increasing of organic nitrogen sources was much important in callus induction while it seemed different in plant regeneration. Based on the great effects of organic nitrogen on callus induction, the medium of N6-ANO1/4-2000 might be the best choice for the microspore culture system. In addition, the phylogenetic analysis indicated that there were clear differences of genetic backgrounds among these barley genotypes, and it also suggested that this medium for microspore culture had widespread utilization in different barley genotypes.

Highlights

  • A haploid plant contains a single set of chromosomes normally from a gamete in diploid plants

  • Haploids can be induced to homozygous double haploids (DHs) in natural chromosome doubling or by artificial chromosome doubling with the colchicine

  • The callus yields would be increased further if using organic nitrogen sources, and the callus yields of BI-06 and BI-45 peaked in medium of N6-AO, Hua-30 peaked in N6-O, and BR06-5 peaked in N6-ANO

Read more

Summary

Introduction

A haploid plant contains a single set of chromosomes normally from a gamete in diploid plants. There is an efficient system for green haploid plants regenerations by isolated microspore culture in tobacco [9], situations are different in other plant species [5]. Mordhorst and Lorz [23] found the importance of nitrogen sources for the initiation of androgenesis and plant regeneration in isolated microspore culture of barley. All these researches resulted in significant advances in anther culture and microspore culture of Igri, while they were highly affected by the growth environments and the donor plants themselves [24, 25]. We attempted to minimize effects of genotypes on isolated microspore culture by using different barley genotypes and manipulation of nitrogen supply in the culture medium

Materials and Methods
Results
Discussions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.