Abstract

Insulin-like growth factor II (IGF-II) is involved in the regulation of somatic growth and metabolism in many fishes. IGF-II is an important candidate gene for growth traits in fishes and its polymorphisms were associated with the growth traits. The aim of this study is to screen single nucleotide polymorphisms (SNPs) of the largemouth bass (Micropterus salmoides) IGF-II gene and to analyze potential association between IGF-II gene polymorphisms and growth traits in largemouth bass. Four SNPs (C127T, T1012G, C1836T and C1861T) were detected and verified by DNA sequencing in the largemouth bass IGF-II gene. These SNPs were found to organize into seven haplotypes, which formed 13 diplotypes (haplotype pairs). Association analysis showed that four individual SNPs were not significantly associated with growth traits. Significant associations were, however, noted between diplotypes and growth traits (P<0.05). The fish with H1H3 (CTCC/CGCC) and H1H5 (CTCC/TTTT) had greater body weight than those with H1H1 (CTCC/CTCC), H1H2 (CTCC/TGTT) and H4H4 (TGCT/TGCT/) did. Our data suggest a significant association between genetic variations in the largemouth bass IGF-II gene and growth traits. IGF-II SNPs could be used as potential genetic markers in future breeding programs of largemouth bass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call