Abstract

Cryptosporidium spp. in diarrheic calves less than 30 days old from farms across Northern Ireland were examined over a year period by microscopic, genotyping, and subtyping techniques to characterize the transmission dynamics. Cryptosporidium oocysts were detected in 291 of 779 (37.4%) animals. The prevalence rates of rotavirus, coronavirus, and Escherichia coli K99+ were lower as seen in 242 of 806 (30.0%), 46/806 (5.7%), and 16/421 (3.8%) of animals, respectively. Of the 224 Cryptosporidium-positive specimens available for molecular analysis, Cryptosporidium parvum was identified in 213 (95.1%) specimens, Cryptosporidium bovis in eight (3.6%), and Cryptosporidium deer-like genotype in three (1.3%). Sequence analysis of the 60-kDa glycoprotein gene identified 16 IIa subtypes and a new subtype family, with 120 of the 216 (55.6%) positive specimens having the subtype IIaA18G3R1. Eight of the IIa subtypes were previously seen in humans in Northern Ireland. Several subtypes were temporally or geographically unique. The genetic diversity in calves in Northern Ireland was much greater than that reported from other areas. This work demonstrates the utility of genotyping and subtyping tools in characterizing the transmission of Cryptosporidium spp. in calves and humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.