Abstract
Spontaneous mutation is the ultimate source of all genetic variation. By interacting with environmental factors, genetic variation determines the phenotype and fitness of individuals in natural populations. However, except in a few model organisms, relatively little is known about the patterns of genotype-environment interactions of spontaneous mutations. Here I examine the rates of spontaneous mutation and the patterns of genotype-environment interaction of mutations affecting vegetative growth in the human fungal pathogen Cryptococcus neoformans. Eight mutation accumulation (MA) lines were established from a single clone on the nutrient-rich medium YEPD for each of two temperatures, 25 degrees and 37 degrees. Cells from generations 100, 200, 400, and 600 for each of the 16 MA lines were stored and assayed for vegetative growth rates under each of four conditions: (i) 25 degrees on SD (a synthetic dextrose minimal medium); (ii) 25 degrees on YEPD; (iii) 37 degrees on SD; and (iv) 37 degrees on YEPD. Both MA conditions and assay environments for vegetative growth showed significant influence on the estimates of genomic mutation rates, average effect per mutation, and mutational heritability. Significant genotype-environment interactions were detected among the newly accumulated spontaneous mutations. Overall, clones from MA lines maintained at 37 degrees showed less decline in vegetative fitness than those maintained at 25 degrees. The result suggests that a high-temperature environment might be very important for the maintenance of the ability to grow at a high temperature. Results from comparisons between clinical and environmental samples of C. neoformans were consistent with laboratory experimental population analyses. This study calls into question our long-standing view that warm-blooded mammals were only occasional and accidental hosts of this human fungal pathogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.