Abstract

Often, yam cultivars grown in different agro-ecologies show differential responses across production environments, a term known as genotype-by-environment interaction. Such genotype-by-environment interaction makes selection of the best genotypes under varied production environments more complex. This study evaluated twenty yam genotypes in six test environments to assess genotype, environment, and their interaction effects on tuber yield, response to yam mosaic virus, and dry matter content. The experiments were conducted over two seasons across three locations in Uganda, using a randomized complete block design with three replications. There were significant effects (p ≤ 0.001) for genotype (G), environment (E), and genotype-by-environment interaction for all key traits assessed. Serere (2021) and Namulonge (2021) were identified as the most discriminating and representative environments for testing responses to yam mosaic virus, respectively. Serere (2021) was recognized as the most discriminating environment, whereas Arua (2021) emerged closest to an ideal environment for assessing yam tuber yield. The tested genotypes also exhibited resistance to yam mosaic virus disease, had high tuber yields and dry matter content. Genotypes UGY16020, UGY16034, UGY16042, and UGY16080 demonstrated highest resistance to yam mosaic virus disease, along with high yield and dry matter content, and are thus potential parents for yam genetic improvement. Further evaluation of the four genotypes should be carried out within farmers’ production systems for selection, improvement and release as new yam varieties for Uganda.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call